Additive manufacturing users – when is the last time you considered just how intensive your resin removal process is? To give you an idea of the resources that you may be wasting by utilizing traditional chemical detergent solutions, we’ve leveraged data from a real-life customer to delve into how our full resin removal solution compares to IPA for resin removal.
The Realities of Traditional Detergents
The shortcomings of using solvents like isopropyl alcohol (IPA), dipropylene glycol methyl ether (DPM), or tripropylene glycol methyl ether (TPM) may be glaringly obvious day in and day out. It’s no secret that these detergents can be cumbersome to otherwise smooth-running SLA, DLP, or CLIP workflows thanks to harmful fumes, low flashpoints, and/or the need for frequent chemical changeouts.
Not only do these detergents often pose a risk to workplace safety, but particularly on complex geometries, they don’t excel at fully removing resin from printed parts. PostProcess customers like Splitvision have complained that in intricate crevices like screw towers, small slots, and ribs, “It can be a very tedious job to fully clean the resin off of these features with a traditional solution like isopropyl alcohol (IPA).” When IPA performance falls short, excess manual labor is often required. Spending time manually scrubbing and picking off resin does not only slow down production, but it can skyrocket the unit cost of a part.
But – what’s the alternative to soak tanks with detergents like IPA?
PostProcess’s latest resin removal detergent, PLM-403-SUB, was developed specifically to work with the brand’s patented Submersed Vortex Cavitation (SVC) technology, a transformative post-printing solution. The SVC system leverages software-driven ultrasonic cleaning, agitation, and controlled temperatures in a vortex pumping scheme to remove resin quickly and efficiently. When used in one of our SVC-based solutions (e.g. the PostProcess DEMI 400 Series), the detergent unlocks revolutionary benefits and efficiencies for SLA/DLP/CLIP users.
Read on for actual data we’ve calculated from a PostProcess customer that demonstrates how our solutions directly compare to IPA.
Lower Flammability Risk
The PLM-403-SUB detergent has a high flammability point, which means it does not ignite from a spark at the machine’s working temperature. Its flashpoint is significantly higher than that of IPA, and it lacks the overpowering, unpleasant fumes that IPA is also notorious for.
Disposal Cost Savings
As we’ve spoken to, PLM-403-SUB is generally less hazardous than IPA, making it comparatively more pleasant to work with, and cheaper to dispose of. In fact, we’ve found that additive users can achieve over 75% or more savings in annual detergent disposal costs when replacing IPA with the whole PostProcess solution.
Longevity and Subsequent Cost Savings
In the customer case being analyzed, PLM-403-SUB lasted five times longer than IPA. Thanks to this longer detergent lifespan, they only went through about 200L of the PostProcess detergent in a year, compared to the 1000L of IPA they typically went through in twelve months’ time. These various savings all piled up to a significant 30% reduction in total yearly resin removal detergent costs.
Because the PostProcess solution is automated and extremely effective, the need for manual labor and hands-on technician time is virtually eliminated. The solution’s intuitive settings allow users to simply “press play and walk away”, enabling rapid processing times without having to run multiple chemical baths.
We’re proud to say that our resin removal solutions have brought these sorts of astounding efficiencies to a variety of additive users, including Empire Group and Print Parts. Most recently, our SVC-driven DEMI 400 Series was selected by German distributor ProductionToGo to pair with their Nexa3D photopolymer printers, offering complete workflow automation. These solutions will enable Nexa3D prototypes or series production parts to be finished with the industry’s fastest cycle time using minimal manual labor, and with detergents that are much less hazardous than other solvents. Read more on this recent partnership here.
-> Want to connect? Contact Us
-> Return to Blog Homepage