Choosing the Right Automated Support Removal Technology for Your Additive Operation

Now that you’ve made an investment in 3D printers and design software for your additive manufacturing operation, your print volumes are undoubtedly scaling at a brisk pace. While the rapid throughput that 3D printing enables can boost your business, the post-printing step often falls short at keeping up with this newfound level of productivity. Unfortunately, bottlenecks in this stage are extremely common, as typical post-printing methods are archaic and overly reliant on manual labor.

The answer to this common conundrum? Digitalization. Software-driven solutions can bring your post-printing process up to speed with the rest of your workflow and connect the digital thread. So, where should you get started?

Getting Started with Automated Post-Printing
Our cutting-edge solutions are the first of their kind to effectively replace common support removal methods with automated approaches that leverage patent-pending software and exclusive chemistry technologies. This blog offers helpful insight into the differences between the various PostProcess technologies, as well as which technology is most ideal for removing structural part supports in your unique workflow. We’ll be touching on two popular print technologies, Fused Deposition Modeling (FDM) and PolyJet.

So, how do you know which of our support removal solutions is best suited for you? Of our four core technologies, two are developed for support removal:

  • Volumetric Velocity Dispersion (VVD)
    The patented approach utilized in our VORSA and BASE solutions.
  • Submersed Vortex Cavitation (SVC)
    The patented approach utilized in our DEMI 400, 800, 900, and 4000 Series.

Both of these approaches utilize our AUTOMAT3D® software to customize parameters to your unique processing needs, which may then be saved as “recipes” for future use. Each option also leverages detergents specific to whichever primary polymer-based print technology you’re utilizing – material extrusion (i.e., FDM) or material jetting (i.e., PolyJet). In fact, the print technology that you’re using is going to be the most crucial deciding factor in determining if VVD or SVC is the best fit for you.

Fused Deposition Modelling (FDM)
FDM is renowned for its versatile ability to seamlessly print complex geometries. Our VVD technology is developed for the post-printing needs of intricate FDM part geometries and meant to effectively replace submersion tanks. Due to limited ultrasonics capability and temperature control, processing times in these traditional submersion tanks are often lengthy and inefficient. VVD abounds with benefits to improve FDM post-printing workflows.

  • The technology employs spray nozzles that release detergent in a high flow, low-pressure technique. Combined with heating/cooling agitation, these parts remove hard-to-reach support material on FDM parts gently and efficiently.
  • The spray technique of VVD prevents sparse-fill FDM parts from becoming waterlogged, allowing rates of removal to remain optimal.
  • While alternative post-printing detergents are often caustic and require frequent changing, PostProcess’s proprietary detergents used with VVD can process parts 10-12x as quickly and last twice as long as the leading FDM post-print detergents.
  • Companies that have implemented VVD solutions such as the BASE have experienced significant returns-on-investment, such as decreases in operator labor and a drop in the time that must be dedicated to post-printing. For example, The Toro Company averaged an 89% decrease in post-print processing times and over a 90% decrease in operator labor. Read the full case study here.

PolyJet
As PolyJet printing is especially conducive to softer materials and parts with more complex internal channels, our SVC technology is ideal for effectively breaking up and removing support material without disfiguring PolyJet parts. Traditional PolyJet support removal methods like water jetting and submersion tanks are notorious for slow-moving processing and causing damage to parts.

  • SVC is our proven technology for PolyJet post-printing. Leveraging submersion techniques rather than spray methods, the technology employs a combination of heat, pump agitation, and ultrasonics to finish PolyJet parts.
  • While tacky hybrid layers on PolyJet parts can be bothersome to post-print, SVC can swiftly remove this layer in a singular step.
  • With agitation-driven submersion, SVC technology can more easily access the intricate internal channels of PolyJet parts. These sorts of channels may be especially prevalent in PolyJet parts created for medical or dental applications.
  • SVC’s vortex pumping scheme ensures that “parts that float sink, and parts that sink float.” In other words, regardless of density or geometry, SVC will ensure that the part is uniformly exposed to the detergent and cavitation from the ultrasonics, enabling a uniform finish.
  • Thanks to the calculated design of the SVC machines, parts can be loaded in and finished while still on the build tray for seamless transport between additive phases.
  • As previously mentioned, PostProcess’s proprietary detergents are safer, less caustic, and hold longer lifespans than competing PolyJet detergents.

Protolabs is one of the many companies that realized significant return-on-investment with a PostProcess SVC solution, reducing labor time by 50% and effectively freeing up 20 valuable labor hours per week. Read the full story here.

Still have questions? Our Live Solution Experience tours delve into our solutions for FDM, PolyJet, and beyond. Guided by one of our expert engineers, these tours show parts being processed and our machines being run in real-time, with the opportunity to ask questions.

After You’ve Chosen Your Solution
Once you’ve invested in one of our automated solutions, a PostProcess Application Engineer will guide you through our entire installation, training, and integration (ITI) process. This includes training on the functions and capabilities of the solution and advisement on the best practices regarding the cadence of your maintenance and your revitalized throughput levels. PostProcess has immense experience across virtually every additive manufacturing material, so you can rest assured that our engineers can make recommendations specific to your particular workflow and materials. Additionally, our User Support Site features resources and manuals that are accessible whenever you need them.

Want to learn more? Head over to our comprehensive FAQ page for additional insights, or contact us at info@postprocess.com.

-> Want to connect? Contact Us

-> Return to Blog Homepage

Overcoming the Top 5 Post-Printing Obstacles: Your 2021 To-Do List

The start of a new year is an opportune time to hit the “refresh” button and take a good look at where improvements can be made. As we look ahead to 2021, most additive manufacturing operations are hopeful to save costs and increase productivity and efficiencies in the upcoming year. One often-overlooked roadblock to achieving these goals can be post-printing.

Often called the “dirty little secret” of additive manufacturing, post-printing is the final phase of the additive workflow that though rarely talked about, can have dire impacts on efficiencies and scalability. As the world’s first innovator of automated post-printing solutions, PostProcess is committed to resolving the issues caused by post-print bottlenecks with proprietary technologies that leverage software, hardware, and chemistry. Read on to delve into the top five post-printing mistakes that additive companies can make, as well as opportunities to overcome them.

Hand writing with a pencil in on a desk calendar.1. Underestimating Future Post-Print Needs
Additive is a rapidly scaling industry, predicted to reach a total market size of $26.68 billion by 2027. So, it’s likely that your own additive operation is growing at a steady rate as well. In our second Annual 3D Post-Printing Trends Survey Report, a mere 25% of individuals reported that their current post-printing methods will be acceptable for their future plans. Along the same grain, the respondents using print technologies targeted for production scale were the ones reporting the most expenditures and labor issues associated with post-printing.

A first step in understanding your true post-printing needs is to embrace the integrated ideology that we employ at PostProcess. While it’s easy to put post-printing on the backburner when viewing “Design”, “Print”, and “Post-Print” as separate, sequential phases, considering these steps to be interdependent can help set you up for success and accurately evaluate your post-printing needs. At the end of the day, arcane post-printing steps like manual picking and sanding, or traditional tumbling/blasting are simply not sustainable options for production volume additive manufacturing. Proactively considering your post-print needs are critical in making the most out of your time, energy, and materials.

2. The Impact of EH&S
Our aforementioned trends report study found that Vat Photopolymerization respondents held the highest concern for improving the health, safety, and environmental (EH&S) impact of their post-printing operation, followed closely by Powder Bed Fusion respondents. Considering the hazards associated with current methods, there is plenty of room for improvement in the safety and sustainability of post-printing.

Speaking to these EH&S issues, the chemicals traditionally used to finish 3D printed parts are notoriously harsh, causing unpleasant working conditions for technicians. Additionally, low flashpoints on chemicals like isopropyl alcohol (IPA) carry immense safety concerns and may lead to storage limitation issues. Traditional submersion methods (usually used for Vat Photopolymerization) require somewhat frequent changeouts of these potentially caustic chemicals – effectively slowing down efficiencies, and increasing the risk of safety hazards. The bottom line? Understanding the input and output of each printing system used in a facility can spare you from months of initial downtime and missed opportunities for ROI savings.

If you’re looking to modernize your workflow, PostProcess engineered the first-ever detergent specifically conducive to additive resin removal. Compared to IPA, this detergent immensely improves longevity to better handle large print volumes and was developed with a higher flashpoint to ease storage concerns. After experiencing continuous issues with IPA, international industrial design agency Splitvision switched to our solution which took cycle times from 30 minutes per part down to finishing 10 parts in less than 5 minutes. You can read the case study in full in our Case Studies database.

3. Undervaluing DfAM
Considering the post-print phase during part design can enable significant time, cost, and material savings for additive operations – it’s part of the integrated approach we spoke to earlier. When lacking this mindset, it’s common for engineers to mismatch applications to print technologies, and set unrealistic expectations for how the part will come off the printer. When occurring in real-time, these sorts of surprises can significantly inhibit productivity.

By beginning with the end in mind, technicians can optimize post-printing with simple, intuitive design considerations. Our white paper covers in depth the impact of the ways that strategies like part orientation, self-supporting angles, contour toolpaths, etc. can help impact overall efficiencies in FDM printing. Embracing the full power of DfAM is essential to achieving the highest part quality standards and most efficient operation possible.

4. Overlooking Post-Printing Costs
This year’s trend report found that about 20% of respondents don’t know what they spend on post-printing. These numbers can add up fast, as they incorporate labor, equipment, consumables, and more. Because technicians are typically doing the post-printing and management is somewhat removed, it’s understandable why the impact of these processes get overlooked. By keeping a close eye on the resources that your post-printing utilizes, you can stay aware of potential inefficiencies in your process, and gain a sense of how much you may save with an automated solution.

PostProcess has a specific return on investment (ROI) formula calculation which determines how much post-printing time one of our automated solutions could save an operation. To fully understand the impact of manual post-print costs, it’s essential to refer back to issue #2, and take chemical/general waste output, as well as material scrapping into consideration.

5. Hindering Scale-Up
This issue speaks to the general gist of the problem with traditional post-print methods. Simply put, manual post-printing processes are too time-consuming to truly allow the growth and scalability that most printing companies need to thrive. Not to mention, they can be incredibly wearing on technicians. If you are thinking of scaling up your additive process in 2021, it may be tempting to throw manual labor at the problem. However, the most efficient solution is going to be software-driven, so it’s vital to consider digitalized options.

By automating the post-printing process, technicians can spend less time on manual labor, and more time on sustainable, value-adding tasks. As the manufacturing landscape and specifically additive manufacturing becomes increasingly digitalized, implementing an automated approach to overcome the post-printing bottleneck can be transformative for your additive workflow. For more real-life examples of ways that our technologies have revolutionized additive operations, explore these testimonials.

-> Want to connect? Contact Us

-> Return to Blog Homepage

Site Map | Terms of Use | Privacy Policy | © 2024 PostProcess Technologies. All Rights Reserved | 2495 Main Street, Suite 615, Buffalo, NY 14214, USA | Phone: 1.866.430.5354 | info@postprocess.com

Twitter
YouTube
LinkedIn
Facebook