Welcome to the first in our four-part series guiding you through a deep dive into the building blocks of our first-of-their-kind automated support and resin removal and surface finishing solutions 3D post-print technologies. You may know us as the world’s first and only software-driven solution for post-processing of additively manufactured parts for all 3D print technologies. What you may not know is that we have four unique key technologies that harness various chemical and mechanical energy sources that form the basis of all the innovative solutions we offer.
Our four core technologies are:
- Volumetric Velocity Dispersion (for soluble support and resin removal)
- Submersed Vortex Cavitation (for soluble support and resin removal)
- Suspended Rotational Force (for surface finishing)
- Thermal Atomized Fusillade (for excess powder removal and surface finishing)
In a series of four blog posts, we’ll educate you on the building blocks of each technology and relate them to the flashy words our technologies are tagged with. First up is our Volumetric Velocity Dispersion (VVD) technology for support and resin removal, which is used in our VORSA 500 and BASE Solutions.
The key components to VVD are our:
- Proprietary detergents
- Two jet rack manifolds
- AUTOMAT3D® software
Now let’s dive into the role each one of these components plays…
Proprietary Detergents:
Our additive-formulated chemistry is leading the charge, playing a key role in the power of our VVD technology. Unlike anyone else in the industry, our three primary detergents for use in the VVD line were all developed by our chemists specifically for additive materials. We have a detergent specific for each supported print technology – material extrusion (i.e., FDM) and material jetting (i.e., PolyJet). For each one of these technologies, the PostProcess detergent will dissolve the soluble support material or uncured resin without compromising the build material. Our chemistry is optimized for the materials used by each technology, and our solutions then take it a step further by optimizing multiple fine-tuned mechanical energy sources which we will cover in the next section.
The parts being doused in a high volume of our proprietary detergent while processing covers the “Volumetric” portion of VVD technology.
Two Jet Rack Manifolds:
Leveraging spray technology rather than submersion introduces a mechanical energy source that is unique in the industry. PostProcess VVD technology utilizes two jet rack manifolds, the first a bottom-mounted manifold intended for low pressure, full tray coverage. The second top-mounted manifold runs along the top of the chamber. The user may set parameters for varying levels of energy output from the jets via the AUTOMAT3D software for a more focused agitation. Together the two opposing jet streams keep the parts in equilibrium throughout the cycle mitigating the need for fixturing. The mechanical energy from these two streams, flowing at rates upwards of 200 GPM (over 750 liters/minute), optimizes the chemistry by disposing of the support material as it weakens, dramatically accelerating the cycle times. This high volume flow complemented by low pressures (less than 35 PSI, or 241 kPA) remains gentle on part geometries throughout processing. These powerful yet gentle flow patterns are what accounts for the “Velocity” component in our VVD technology.
AUTOMAT3D Software:
At this point, we have covered the hardware and chemistry portion of PostProcess’ VVD technology. Our AUTOMAT3D software is the final and most imperative part of our technology. The acute control of the system’s energy sources is essential to all of our solutions. AUTOMAT3D acts as the conductor of the whole process, configuring all of the energy output sources in response to sensor input data. The software manages the temperature, pH, jet flow patterns, and movement, all in concert with cycle time. This control over the combination of jet usage and movement is the “Dispersion” piece of the technology. Not only does the software provide the solution with the highest degree of energy management, but it also simplifies machine operation for the user. With recipe storage, process parameters can easily be saved for easy recall, requiring minimal operator time and promoting consistency with each cycle. Lastly, preventative maintenance and warnings allow users to plan for maintenance, further minimizing any downtime.
Now that you have a better understanding of our Volumetric Velocity Dispersion technology, find out if it is right for your application! Contact us today to discuss your specific application and get the benchmark process started.
-> Return to Blog Homepage
-> Want to learn more? Contact Us