Why Additive’s Ramp to Production Requires a New Way to Surface Finish

FDM Surface FinishSurface finish is fundamental to the performance and appearance of any ‘customer-ready’ part. For example, in the way of performance, an uneven surface can create aerodynamic drag that is the difference in a part meeting or failing a critical test. In the way of aesthetics, it can also be the difference between a client accepting or rejecting a prototype of a new product design. This is true for both additive and traditionally produced parts.

Here at PostProcess, customers increasingly look to surface finish their 3D printed parts at the prototyping stage. For example, at in-house additive prototyping labs, operators need to deliver as close to the desired look and performance of the end-use part as possible for print technologies such as FDM, SLS, and SLA. We’re seeing customers’ prototyping volumes grow rapidly, producing 1,000 prototypes in their labs a year or two ago to now producing 10,000 to 20,000 prototypes in the same lab.

But that trend of prototyping dominance is likely about to change, as many predict 2019 will be the year that additive manufacturing as a whole moves from prototyping into full production with exponential increases in volume. The success of mass customization in a few markets, such as dental, are contributing to that shift where tens of millions of printed parts are already produced annually. And as such, the requirement for parts that are efficiently and consistently surface finished will ramp as well. This is where automation becomes a necessity to support the scalability of additive manufacturing.

The first aspect of surface finish automation to consider is consistency. Oftentimes there’s more art than science when it comes to surface finishing for additive today. Automated surface finishing produces a level of consistency that is not possible using manual processes or traditional vibratory tumblers – especially when there are fragile geometries or fine feature detail. Manual labor is especially restrictive in production spaces when you must quickly create replicable results with complex geometries and intricate details. PostProcess solutions run around the clock on our proprietary software platform and offer a consistency that is simply not possible with traditional methods.

The second consideration is throughput. It’s a simple reality that as print volumes scale, the operation will experience an increased bottleneck in post-print if it employs hands-on surface finishing. With our solutions, automating that surface finish process in batch quantities eliminates the one-by-one serial process and removes that bottleneck.

The third aspect is return on investment. Redirecting people to spend their limited time on more value-added activities is a benefit of automation that extends beyond dollars and cents to workforce satisfaction and retention. We’ve thoughtfully designed our platform with features that center around ease of use, such as built-in maintenance scheduling, which means technicians spend less time on maintenance and have less pressure to remember maintenance schedules. As such, our solutions significantly reduce the amount of attended technician time – in many cases by at least 90% – to give customers a very fast return on investment, typically within a 10-30 week timeframe.

So as we look to 2019 with high expectations of fulfilling the promises of additive’s growth, be sure to consider your own production expansion and how automation in both print and post-printing can enable the future you’ve been counting on.

-> Return to Blog Homepage

Site Map | Terms of Use | Privacy Policy | © 2024 PostProcess Technologies. All Rights Reserved | 2495 Main Street, Suite 615, Buffalo, NY 14214, USA | Phone: 1.866.430.5354 | info@postprocess.com

Twitter
YouTube
LinkedIn
Facebook